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Abstract - This  paper  uses  the  parallel  calculation of the  radiation  integral  for 

examination of performance  and compiler issues on a Beowulf-class computer. 

This type of computer,  built from mass-market, commodity,  of-the-shelf 

components, has limited  communications  performance  and  therefore  also  has a 

limited  regime of codes for which it  is  suitable.  This  paper first shows that this 

code falls  within this regime,  and  then  examines  performance  data,  including 

run-time,  scaling, compiler choices, and  the  use of some hand-tuned 

optimizations,  comparing  results from a Beowulf and a Cray T3D. 
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1. Introduction 

A  typical small Beowulf system,  such as  the  machine at the  Jet  Propulsion 

Laboratory  (JPL)  may  consist of 16 nodes interconnected by 100Base-T Fast 

Ethernet.  Each node may  include a single  Intel  Pentium  Pro 200 MHz 

microprocessor, 128 MBytes of  DRAM, 2.5 GBytes of IDE disk,  and PC1 bus 

backplane,  and  an  assortment of other devices. At least one node will have a video 

card,  monitor,  keyboard, CD-ROM,  floppy drive, and so forth.  But  the technology is 

evolving so fast  and price performance  and price feature  curves  are  changing so 

fast  that no two Beowulfs ever look exactly alike. Of course, this  is  also  because  the 

pieces are  almost  always  acquired from a mix of vendors and  distributors.  The 

power of de facto standards for interoperability of subsystems  has  generated a n  

open market  that provides  a wealth of choices for customizing one’s own version 

of Beowulf, or just maximizing cost advantage as prices fluctuate  among  sources. 

Such a system will run  the Linux [11 operating  system freely  available over the  net 

or in low-cost and convenient CD-ROM distributions. In addition,  publicly 

available  parallel  processing  libraries  such as MPI [2] and PVM [SI are used to 

harness  the power of parallelism for large  application  programs. A Beowulf 

system  such as described here,  taking  advantage of appropriate  discounts,  costs 

about $30K including  all  incidental components such  as low cost  packaging. 

At this  time,  there  is no clearly  typical medium to large Beowulf system,  since 

as  the  number of processors  grows,  the choice of communications  network  is  no 

longer as clear.  (If the  machine  can  use a crossbar  that  can  support  the  entire 

machine,  the choice is simply to use  that  crossbar switch.)  Many choices exist of 



various topologies of small  and  large  switches  and  hubs,  and  combinations 

thereof. 

Naegling,  the Beowulf-class system at the  California  Institute of Technology, 

which currently  has 140 nodes, has  had a number of communications  networks. 

The  first  was a tree of 8- and 16-port hubs. At the top of the  tree  was a standard 

100 Mbit/s 16-port  crossbar,  with  full  backplane  bandwidth.  Each  port of this  was 

connected to a hub.  Each  hub  had 100 Mbit/s ports connected to 8 or 16 computers; 

however, the  backplane  bandwidth of each  hub  was also 100 Mbit/s. The  second 

topology used  additional 16-port crossbars at the low level of the  tree,  where 15 

ports of each  crossbar  were connected to computers,  and  the  last port was 

connected to a high-level  crossbar.  A third  network  (which  is  not  functioning 

currently) involves 2 80-port switches,  connected by 4 Gbit/s links.  Each  switch 

has 100  Mbit/s ports  and  full  backplane  bandwidth. 

The Beowulf approach  represents a new business model for acquiring 

computational  capabilities. It complements rather  than competes  with the  more 

conventional  vendor-centric  systems-supplier  approach. Beowulf is not for 

everyone. Any site that would include a Beowulf cluster  should  have a systems 

administrator  already involved in  supporting  the  network of workstations and 

PCs that  inhabit  the workers’  desks. Beowulf is a parallel  computer, and as such, 

the  site  must be willing to run  parallel  programs,  either developed in-house  or 

acquired from others. Beowulf is a loosely coupled, distributed  memory  system, 

running  message-passing  parallel  programs  that do not  assume a shared 

memory space  across  processors. Its long  latencies  require a favorable balance of 

computation to communication  and code written to balance the workload across 

processing nodes. Within  the  constrained  regime  in  which Beowulf is  



appropriate?  it  should provide the best performance to cost and often comparable 

performance  per  node  to  vendor offerings. 

2. Physical Optics 

The code described in  this  paper [4] is used to design and  analyze  reflector 

antennas  and telescope  systems. It is based  simply on a discrete  approximation of 

the  radiation  integral [5]. This  calculation  replaces  the  actual reflector surface 

with a triangularly faceted representation so that  the reflector resembles a 

geodesic dome. The  Physical Optics (PO) current  is  assumed to be constant i n  

magnitude  and  phase over each facet so the  radiation  integral is reduced to a 

simple  summation.  This  program  has proven to be surprisingly  robust  and 

useful for the  analysis of arbitrary reflectors, particularly  when  the  near-field is  

desired and  the  surface  derivatives  are  not known. 

Because of its simplicity, the  algorithm  has proven to be extremely  easy to 

adapt to the  parallel  computing  architecture of a modest number of large-grain 

computing  elements.  The code was  initially  parallelized on the  Intel  Paragon, 

and  has since  been  ported  to the Cray  T3D7  T3E, and Beowulf architectures. 

For  generality,  the code considers a dual-reflector  calculation, as illustrated i n  

Figure 1, which  can be thought of as  three  sequential  operations: (1) computing 

the  currents on the first (sub-)  reflector using  the  standard PO approximation; (2) 

computing the  currents on the second (main) reflector by utilizing  the  currents  on 

the  first  (sub-) reflector as  the field generator;  and (3) computing  the  required 
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Figure 1. The  dual reflector  Physical  Optics  problem,  showing the source, the two 

reflectors, and  the  observation points. 

observed field values by summing  the fields from  the  currents on the  second 

(main) reflector.  The  most time-consuming  part of the  calculation  is  the 

computation of currents on the second reflector due to the  currents on the first, 

since for N  triangles on the  first reflector,  each of the M triangles on the  second 

reflector require  an  N-element  sum over the first. At this  time,  the code has been 

parallelized by distributing  the M triangles on the second reflector, and  having  all 

processors  store  all  the  currents on the N triangles of the first reflector (though 



the computation of the  currents of the  first reflector is done in  parallel.) Also, the 

calculation of observed field data  has been parallelized. So, the  three  steps  listed 

above are  all performed in  parallel.  There  are  also  sequential  operations involved, 

such  as I/O and  the  triangulation of the reflector surfaces,  some of which 

potentially could be performed in  parallel,  but  this would require a serious effort, 

and  has not  been  done at this  time. 

This code is written  in FORTRAN, and  has been parallelized  using MPI. 

Communication is required  in two locations of the code. At the  end of the first 

step,  after  each processor has computed a portion of the  currents  on  the first 

reflector, the  currents  must be broadcast to all the processors. While this may be 

done in  many  ways, a call to MPI-Allgatherv is  currently used. During  the  third 

step,  each processor calculates a partial  value for each  final observed field, by 

integrating over the  main reflector currents local to that processor. A global s u m  

(an MPI-Reduce call)  is  required to compute the complete result for each 

observed field value.  Since  there  are  normally a number of far fields computed, 

currently  there  are  that  number of global sums.  These could be combined into a 

single global sum of larger  length,  but  this  has not been done at this time,  since 

the communication  takes  up  are  such a small portion of the overall run time. 

3. Results 

A note to the  reviewers: The  results  show  below  are  only  for 16 processors, 
because  the  communications  network  on  the  Beowulf  system  at  Caltech  is 
currently  the  second  network  mentioned in section 1 above. It  is  not  possible to 
achieve  decent  results  for  runs  on  more that one switch,  due  to  the  severely 
limited  bandwidth  between  switches.  I  expect  the  third  communications  network 



to be in  place  and  working before the  final  version of this  paper  is  due,  and I p l a n  
to  include  results  on  at  least 64 processors in the final version. 

Tables 1 and 2 show initial  timing  results for the PO code, for 2 difference size 

sub-reflectors,  with the  same size main reflector. Each  run  is  broken down into 

three  parts. Part I is  input I/O and  triangulation of the  main reflector surface, 

some of which is done in parallel. No communication  occurs in  part I. Part I1 is 

triangulation of the sub-reflector surface  (sequential),  evaluation of the  currents 

on the sub-reflector  (parallel),  and  evaluation of the  currents on the  main  reflector 

(parallel). A single MPI-Allgatherv occurs in  part 11. Part I11 is  evaluation of the 

observed fields (parallel)  and I/O (on only one processor). A number of 3 word 

global sums occur in  part 111, one for each observation  point. In  the  test  cases 

used  here,  there  are 122 observation  points.  The Beowulf results  are from the 16 

node system,  using  the GNU g77 compiler. 

Table 1. Original  timing  results  (in seconds) for PO code, for M=40,000, N=400. 

Table 2. Original  timing  results  (in  minutes) for PO code, for M=40,000, N=4,900. 



It may be observed from  Tables 1 and 2 that  the Beowulf  code performs  better 

than  the T3D code, both in  terms of absolute  performance as well as  scaling from 1 

to 16 processors. The  absolute  performance  difference  can be explained by the 

faster  CPU on the Beowulf versus  the T3D, and  the very simple  and  limited 

communication not enabling  the T3D's faster  network to influence the  results. 

The  scaling difference is  more a function of I/O, which is both more  direct and 

more  simple on the Beowulf, and  thus  faster. By reducing  this  part of the 

sequential  time,  scaling  performance  is improved. Another way to look at this is 

to compare the  results  in  the two tables.  Clearly, scaling  is  better in the  large  test 

case,  in which I/O is a smaller  percentage of overall time. 

A second set of Beowulf runs were then  made,  using a commercial  compiler 

(Absoft f77) on the 16-node Beowulf system.  The  results from these  run  are 

compared  with the  original Beowulf results  in Tables 3 and 4. The  change of 

compilers  caused the overall run-times to go down by approximately  30%. 

Number of 

3.19 i 230 I 56.0  5.10 r 307 i 98.2 1 
I ; I1 ; I11 ' I I1 i 111 Processors 

Compiler  2 Compiler 1 ................................................................................................................................................................. 

....................................... .................. ................................ - .................. 
57.7 

14.2 1 14.6 i 3.86 
....................................... ....................................... F .................. 

Table 3. The effect of a second Beowulf compiler,  shown by timing  results  (in 

seconds) for PO code, for M=40,000, N=400. 



Table 4. The effect of a second Beowulf compiler, shown by timing  results  (in 

minutes) for PO code,  for M=40,000, N=4,900. 

It was  also observed that  the computation of the  radiation  integral  in two 

places (in  parts 2 and 3) had code of the form: 

CEJK CDEXP ( - A J * A K R ) ,  

where A S  = ( 0 . dO ,1. dO ) . This  can be changed to: 

CEJK DCMPLX (DCOS (AKR) , - D S I N  (AKR) j . 

On the T3D, these two changes led to improved results, as can be seen  in  Tables 5 

and 6. The  run-time  was reduced by 35 to 40%. When these  changes  were  applied 

to  the Beowulf code using  the second compiler, no significant  performance  change 

was observed, leading to the conclusion that one of the optimizations  performed by 

this compiler  was similar to this  hand-optimization. 

Number of Optimized  Original 
Processors I I1  I11 

8.94 i 62.5 I 14.7 8.88 i 100 . 1 21.3 4 
14.5  249 . i 56.4 14.5 I 399 i . 83.9 1 
I ; I 1  ; I11 

................................................................................................... ....................................... ., .................. 

............................................................................................................................................ ".................. ..................... ................... 

.......................................................... * ......................... ................................... E ....................................... *.: ..................................... 
16 8.79 i 16.6 ! 4.13  8.14 ! 26.1 i 6.26 

Table 5. The effect of a FORTRAN optimization,  shown by T3D timing  results  (in 

seconds) for PO code,  for M=40,000, N=400. 



Table 6. The effect of a FORTRAN optimization,  shown by T3D timing  results  (in 

minutes) for PO code, for M=40,000, N=4,900. 

A comparison of the optimized Beowulf results from Tables 3 and 4 with  the 

optimized T3D results from Tables 5 and 6 shows that when  both  most  machines 

are used for this code as well as possible, the Beowulf system runs slightly  faster 

than  the T3D, but by just a few percent.  This  should  not be taken as a general 

statement  that  the Beowulf system  is  equivalent in performance to the T3D, but 

rather as a measure of performance of running  this code, specifically. 

4. Conclusions 

A note to the reviewers: I do  not expect the  conclusions in this  section  to  change 
dramatically  due  to  increasing  the  computer  size  to 64 processors,  as  discussed a t  
the  beginning of section 3, though  there  will  probably be some  minor  changes. 

This  paper  has  shown  that for parallel  calculation of the  radiation  integral, a 

Beowulf-class computer provides slightly  better performance that a Cray T3D, at a 

much lower cost. The  limited  amount of communication  in  the code defines it a s  

being  in  the  heart of the regime in which Beowulf-class computing  is  appropriate, 

and  thus it makes a good test code for an examination of code performance and 

scaling, as well as an  examination of compiler options and  other  optimizations. 



The  large  test  case which was run  had 1.32 10" floating  point  operations. This 

gives a rate of 4 6  MFLOP/s on one  processor of the Beowulf, and 44 MFLOP/s on 

one  processor of the T3D. These are both quite good (23% and 29% of peak, 

respectively.)  The  pipelining features of the DEC 21064 (150 MHz Alpha)  processor 

(which is  used  in  the T3D) seems  to  help  the compiler  achieve a larger  fraction of 

peak  performance,  but the high  peak rate of the  Pentium Pro (200 MHz) processor 

(which is used  in  the Beowulf) closely counterbalances  this. 

The  speed-ups for scaling from 1 to 4 processors with  the  large  test  case on the 

final Beowulf and T3D codes are 3.99 and 3.96, respectively, and from  4 to 16 

processors, the  speed-ups  are 3.92 and 3.8. The overall  speed-ups  from 1 to 16 

processors are 15.7 and 15.1. This shows that  the  sequential  part of the code is 

fairly  small,  but  still bigger on the T3D than on the Beowulf. The  speed-ups for the 

small  test  case  are worse, 3.92 and 3.71 going from 1 to 4  processors, 3.7 and 2.92 

going from 4 to 16, and 14.5 and 10.8 going from 1 to 16. This shows the  small  test 

case to have a higher  amount of sequential work than  the  larger case, which 

make  sense  since  the I/O is not a function of the  number of triangles. It is clear 

that  scaling (for fixed size  problems) through 16 processors is fairly  decent. For 

the  larger  test case, the scaling is good, and for even larger problem  sizes, scaling 

should be  good for larger  numbers of processors,  since the I/O should  remain 

roughly constant,  but  the  number of floating  point  operations  should grow roughly 

as M x N. 

An interesting observation is  that for Beowulf-class  computing, using 

commodity hardware,  the  user also must be concerned with commodity software, 

including compilers. As compared with the T3D, where  Cray  supplies and 

updates  the best compiler it  has available, the Beowulf system has many 



compilers  available  from  various  vendors,  and  it is not clear  that  any one always 

produces  better code than  the  others. The various  compilers  also  accept  various 

extensions to FORTRAN, which may make compilation of any given code difficult 

or impossible  without  re-writing on some of it,  unless of course  the code was 

written  strictly  in  standard FORTRAN 77 (or FORTRAN go), which seems to be 

extremely  uncommon. 

It is also  interesting to notice that  the  use  hand-optimizations  produces 

indeterminate  results  in  the  final  run  times,  again  depending on which compiler 

is used. Specific compiler  optimization  flags  have  not  been  discussed in this 

paper,  but  the  set of flags that was  used  in each  case  were those  that produced the 

fastest  running code, and  in most  but not all  cases,  various compiler flag options 

produced greater  variation  in  run  times  that  any  hand  optimizations.  The 

implication of this  is  that  the  user  should  try to be certain  there  are no gross 

inefficiencies in  the code to  be compiled, but  that  it is more important to choose the 

correct  compiler and compiler  flags.  This is not a good situation. 

Overall,  this  paper  has  validated  the choice of a Beowulf-class computer  for 

this  physical optics  application,  and for other  similar  low-communication 

applications. It has examined  performance of the  parallel  calculation of the 

radiation  integral  in  terms of comparison  with  the  Cray T3D, scaling, and 

compiler issues,  and pointed  out some “features” of which  users of Beowulf- 

systems  should be aware. 
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